航空用燃料电池及燃料电池涡轮发动机混合电推进系统发展综述
随着世界范围内碳减排需求的日益增长及长航时飞机的发展需要,高效率的燃料电池航空电推进系统逐渐受到重视,氢能航空的理念被人们所熟知,可使用碳氢燃料的高温燃料电池还可与燃气涡轮组成混合动力系统,发电效率进一步提高至70%。本文回顾了燃料电池及燃料电池涡轮混合系统在航空能源、动力系统方向应用概况;概述了几种突破现有涡轮发动机技术瓶颈的新概念混合电推进系统,如发电与推进一体化燃料电池涡轮混合动力系统和无涡轮燃料电池混合推进系统;基于此,分析了限制燃料电池混合系统实际应用的关键技术难题,主要体现在混合动力系统功重比较低、大分子碳氢燃料重整技术未突破两方面。
为构建节约型、可持续发展型社会,各国的环境保护标准日益提高 。2019年12月欧盟提出了到2050年实现温室气体碳中和的目标,之后日本、韩国也提出了在2050年实现碳中和的目标。2020年9月的第七十五届联合国大会一般性辩论上,中国提出了二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和的目标和承诺。其中,交通工具不仅在化石燃料消耗及排放中所占的比例 较大,而且影响人们的生活。以运输量持续增长的航空领域为例,其二氧化碳排放量占全球二氧化碳总排放量的2%以上,且逐年上升。因此,如何提高航空工业动力系统的能量利用效率并降低污染物排放是每一个能源、动力装置研究人员所关心的问题。传统交通工具的动力系统主要为燃烧式引擎,燃气 轮机等。燃烧式引擎从第二次工业革命起开始实用化,已被广泛研究。截止目前,其性能提升较为缓慢,且提升幅度较小 。为降低碳排放、发展噪音较小的新型飞机,人们提出了多电、全电飞机,以电池作为飞机部分或全部能源供给。由于电池能量密度较小,将其作为飞机能源限制了其航程和载重。燃料电池相对于电池等设备具有功率密度大、受天气制约小等特点,相对于传统燃烧式引擎具有热效率高、污染物排放小等特点,可作为新型、高效、低排放动力系统 ,是未来飞机的潜在 最优动力解决方案之一。
质子交换膜燃料电池(Proton Exchange Mem⁃ brane Fuel Cell,PEMFC)和固体氧化物燃料电池(Sol⁃ id Oxide Fuel Cell,SOFC)是目前最具有应用潜力的燃料电池动力系统。PEMFC 已经开始应用于汽车、 轮船等交通工具。然而其只能使用高纯度氢作为燃料,具有一定局限。相比之下,SOFC 是一种高效、清洁能源设备,可使用碳氢燃料,相较于质子交换膜燃料电池在燃料后勤保障体系方面有较大优势。欧洲和北美已有多个供给碳氢燃料的SOFC 示范项目。日本尼桑公司在2016年试运行了一款以乙醇为燃料的SOFC汽车。此外,SOFC工作温度较高 (600~1000℃),相较于 PEMFC 可允许电极温升大,其 水、热管理也相对简单。关注公众号: 两机动力先行,免费获取海量两机资料,聚焦两机关键技术!
本文系统总结了近些年有关燃料电池及燃料电池混合动力系统在飞机推进系统方面的研究进展及相应成果,分析了适用于航空推进系统的燃料电池类型及特点,重点介绍了 PEMFC 有人机、无人机和 SOFC 无人机动力系统的研究、发展现状,介绍了非燃料电池混合动力系统在航空推进系统方面的研究进 展。此外,燃料电池涡轮混合系统不仅可作为大型 飞机机载能源系统,还可为高空长航时无人机、分布式推进飞机和低排放民用客机等长续航、低排放飞机提供动力。文中介绍了燃料电池涡轮混合动力系统作为飞机动力系统的相关研究,包括燃料电池燃气涡轮分布式混合推进系统、燃料电池混合推进与能源一体化系统、无涡轮喷气发动机等多种新型燃料电池及混合电推进系统方案,重点分析了限制燃料电池混合动力系统性能提升及实际应用的主要技术难题:混合系统功重比较低;大分子碳氢燃料重整技术未突破。